存档

2012年6月 的存档

最长公共子序列|最长公共子串|最长重复子串|最长不重复子串|最长回文子串|最长递增子序列|最大子数组和

2012年6月27日 1 条评论

---

最近练手,整理了一个“最”系列的主题,这些题目有点绕,个别的还有别名(详见博文),混在一块比较乱,就索性放在一起做了个整理,区别的时候要注意子序列与子串的不同,前者不要求连续,后者要求连续;由于大部分跟DP有关,有的还可以渐进寻求多种解法,可以用来做不错的练手。

下面是这些问题的博文目录

==========================

=1=最长公共子序列(LCS)==

=2=最长公共子串==

=3=最长重复子串==

=4=最长不重复子串==

=5=最长回文子串==

=6=最长递增子序列(LIS)==

=7=最大子数组和(连续子数组最大和)==

==========================

总结:

  1. 问题分类
    • 前两个是关于两个字符串的问题、中间三个是关于单个字符串的问题,最后两个是数组相关的问题;不过不一定绝对,例如最长公共子序列也可以是数组问题;
    • 从解决方案看,12属于“二维”DP问题,因为是两个对象间的问题;467属于“一维”DP问题,是单个对象的问题;345又是后缀数组的典型应用。
  2. 为练手,对大多数问题,尽量逐步探索,整理了多种思路,例如在最长不重复子串问题中,我逐步优化,尝试了四种实现方法,并成功得到了时间为O(N),辅助空间为常数的方案,回头反思,发现其优化的思维得益于对最大子数组和以及LIS的整理与思考。
  3. 这些问题之间相互有很多相通的地方,例如,在最长不重复子串问题中,其DP思路与最长递增子序列有点类似,二者同属“一维”的问题,并且都需要记录当前元素“之前”的某些信息;而在DP优化过程中,最长不重复子串问题又与最大子数组和的优化同出一辙,这两个“一维”的DP问题都只使用O(1)的空间便可以记录子问题的最优解,这种“便捷”的方案并不是空穴来风,而是先通过“规规矩矩”的DP一步步探索,才发现这种“trick”的存在,很是有意思。

勘误:

  • 本系列文章所有代码出现 char xx  [256] 的地方改为 int xx [256] ,因为从逻辑上讲char xx[256] 是有可能出问题的。(感谢HFC

阅读全文...

最长不重复子串

2012年6月25日 19 条评论

---

题:从一个字符串中找到一个连续子串,该子串中任何两个字符不能相同,求子串的最大长度并输出一条最长不重复子串。

本节从最直接的方法逐步优化,渐进探索了四种实现方式,并最终找到时间复杂度为O(N),辅助空间为常数的方案,内容如下:

==基本算法 使用Hash==

==DP方案==

==DP + Hash 方案==

==DP + Hash 优化方案==

==================================

基本算法 使用Hash

要求子串中的字符不能重复,判重问题首先想到的就是hash,寻找满足要求的子串,最直接的方法就是遍历每个字符起始的子串,辅助hash,寻求最长的不重复子串,由于要遍历每个子串故复杂度为O(n^2),n为字符串的长度,辅助的空间为常数hash[256]。代码如下:

阅读全文...

最长公共子串(Longest-Common-Substring,LCS)

2012年6月25日 7 条评论

---

这个LCS跟前面说的最长公共子序列的LCS不一样,不过也算是LCS的一个变体,在LCS中,子序列是不必要求连续的,而子串则是“连续”的。即:

题:给定两个字符串X,Y,求二者最长的公共子串,例如X=[aaaba],Y=[abaa]。二者的最长公共子串为[aba],长度为3。

本节给出三种不同的实现方式,并对比分析每种方法的复杂度,内容如下:

==基本算法==

==DP方案==

==后缀数组==

==各方法复杂度分析==

==================================

基本算法

其实对于最长公共子串,还是比较简单易想的,因为子串是连续的,这就方便了很多。最直接的方法就是用X每个子串与Y的每个子串做对比,求出最长的公共子串。代码如下:

阅读全文...

最长重复子串

2012年6月25日 5 条评论

---

首先这是一个单字符串问题。子字符串R 在字符串L 中至少出现两次,则称R 是L 的重复子串。重复子串又分为可重叠重复子串和不可重叠重复子串,这里只是简单讨论最长可重叠的重复子串,给出基本算法和基于后缀数组的算法;关于后缀数组,这里也只是用最简单的形式实现,对于后缀数组的倍增算法和DC3算法的实现以及不可重叠重复子串的问题可参见算法合集之《后缀数组——处理字符串的有力工具》,以后再整理这几个问题。

最直接的方法就是子串和子串间相互比较,这样查看所有的子串对,时间复杂度为O(n^2),代码如下:

/* 最长重复子串 Longest Repeat Substring */

int maxlen;    /* 记录最长重复子串长度 */
int maxindex;  /* 记录最长重复子串的起始位置 */
void outputLRS(char * arr);  /* 输出LRS */

/* 最长重复子串 基本算法 */
int comlen(char * p, char * q)
{
	int len = 0;
	while(*p && *q && *p++ == *q++)
	{
		++len;
	}
	return len;
}

void LRS_base(char * arr, int size)
{
	for(int i = 0; i < size; ++i)
	{
		for(int j = i+1; j < size; ++j)
		{
			int len = comlen(&arr[i],&arr[j]);
			if(len > maxlen)
			{
				maxlen = len;
				maxindex = i;
			}
		}
	}
	outputLRS(arr);
}

阅读全文...

最大子数组和(最大子序列和 | 连续子数组最大和)

2012年6月22日 16 条评论

--

一个有N个元素的整型数组arr,有正有负,数组中连续一个或多个元素组成一个子数组,这个数组当然有很多子数组,求子数组之和的最大值。例如:[0,-2,3,5,-1,2]应返回9,[-9,-2,-3,-5,-3]应返回-2。

网上有称之为最大子序列和,亦有称连续子数组最大和。个人觉得叫最大子序列和不太妥,数学上讲,子序列不一定要求连续,而这里我们的题目必然要求是连续的,如果不连续而求子序列最大和很显然就无意义了,这也是为啥又称连续子数组最大和。不过,莫要在意细节。

鉴于《编程之美》对其有几个扩展问题,这里就练手一并实现了,不过整理过程中发现了《编程之美》中的解法错误,查了一下官网的勘误表,居然木有,小激动了一下。。。本节包括以下内容:

==基本思路==

==DP方案==

==返回最大子数组始末位置==

==数组首尾相连【《编程之美》解法错误分析】==

==类似问题==

==================================

基本思路

最直接的方法就是找出所有的子数组,然后求其和,取最大。如果每个子数组都遍历求和,该方法的复杂度为O(N^3),仔细考虑,在遍历过程中,这些子数组的和是有重复计算的:下标i与j之间的区间和Sum[i,j]=Sum[i,j-1]+arr[j]。于是子数组和的求法不必每次都遍历,算法复杂度可以降为O(N^2)。代码如下:

阅读全文...

动态规划基础回顾

2012年6月17日 2 条评论

---

这些日子在家病着,回顾了动态规划(DP)的一些基础,主要是以一些经典的基础题目为线索,整理一下思路。为了练手,每一个主题都尽量整理了多种实现方式(包括书上、网络上的方法),并做简单的对比。相关文章目录如下,以后碰到其他相关的再慢慢更新吧。

简单背包系列

==01背包==

==完全背包==

==多重背包==

字符串处理

==最长公共子序列==

==字符串相似度(编辑距离)==

数组相关

==最长递增子序列==

==最大子数组和(最大子序列和 | 连续子数组最大和)==

面试题

==面试题:捞鱼问题==

==笔试:子序列和最接近数M==

================================

阅读全文...

最长递增子序列(LIS)

2012年6月17日 16 条评论

---

最长递增子序列又叫做最长上升子序列;子序列,正如LCS一样,元素不一定要求连续。本节讨论实现三种常见方法,主要是练手。

题:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列1,-1,2,-3,4,-5,6,-7中,最长递增子序列长度为4,可以是1,2,4,6,也可以是-1,2,4,6。

方法一:DP

像LCS一样,从后向前分析,很容易想到,第i个元素之前的最长递增子序列的长度要么是1(单独成一个序列),要么就是第i-1个元素之前的最长递增子序列加1,可以有状态方程:

LIS[i] = max{1,LIS[k]+1},其中,对于任意的k<=i-1,arr[i] > arr[k],这样arr[i]才能在arr[k]的基础上构成一个新的递增子序列。

代码如下:在计算好LIS长度之后,output函数递归输出其中的一个最长递增子序列。

阅读全文...

字符串相似度(编辑距离)

2012年6月13日 4 条评论

---

个人认为,大部分情况下,DP寻找子问题还是“从后向前”比较直观一些,像这道题目,个人觉得《编程之美》对它的分析就有些别扭,它“从前向后”寻求的子问题使得状态转移矩阵的初始化变得不太方便,不过“从后向前”分析和从前向后效果和原理都是一样的,本节通过三种实现方式来加深理解。

定义字符串的相似度有很多种度量,像前面说的最长公共子序列就是其中的一种,本节所说的“编辑距离”也算是一种,简单来说,编辑距离就是将两个字符串变成相同字符串所需要的最小操作次数。所需的操作可能有:

  1. 修改一个字符(如把“a”替换为“b”)
  2. 增加一个字符(如把“abdd”变为“aebdd”)
  3. 删除一个字符(如把“travelling”变为“traveling”)

例如,对于“abcdefg”和“abcdef”两个字符串来讲,可以通过增加/减少一个“g”的方式来达到目的。上面的两种方案,都仅需要一次操作。把这个操作所需要的次数定义为两个字符串的“编辑距离”。如何计算两个字符串的“编辑距离”?

鉴于DP自底向上求解子问题的性质,我们还是对字符串从后向前分析,这样寻找编辑距离的子问题比较直观,而且分解的子问题使得递归做备忘录变得容易理解,也使得自底向上实现时对状态转移矩阵的初始化更为简便易懂。

寻找子问题时,我们完全可以像分析最长公共子序列那样分析这个问题,我觉得它们是灰常相似的,都是“从后向前”看,假设有两个串X=abcdaex,Y=fdfax,它们的最后一个字符是相同的,只要计算X[1,…,6]=abcdae和Y[1,…,4]=fdfa的距离就可以了;但是如果两个串的最后一个字符不相同,那么就可以进行如下的操作来达到目的(xlen和ylen是X串和Y串的长度):

阅读全文...

最长公共子序列(Longest-Common-Subsequence,LCS)

2012年6月12日 6 条评论

---

一个字符串S,去掉零个或者多个元素所剩下的子串称为S的子序列。最长公共子序列就是寻找两个给定序列的子序列,该子序列在两个序列中以相同的顺序出现,但是不必要是连续的。

例如序列X=ABCBDAB,Y=BDCABA。序列BCA是X和Y的一个公共子序列,但是不是X和Y的最长公共子序列,子序列BCBA是X和Y的一个LCS,序列BDAB也是。

寻找LCS的一种方法是枚举X所有的子序列,然后注意检查是否是Y的子序列,并随时记录发现的最长子序列。假设X有m个元素,则X有2^m个子序列,指数级的时间,对长序列不实际。

使用动态规划求解这个问题,先寻找最优子结构。设X=<x1,x2,…,xm>和Y=<y1,y2,…,yn>为两个序列,LCS(X,Y)表示X和Y的一个最长公共子序列,可以看出

  1. 如果xm=yn,则LCS ( X,Y ) = xm + LCS ( Xm-1,Yn-1 )。
  2. 如果xm!=yn,则LCS( X,Y )= max{ LCS ( Xm-1, Y ), LCS ( X, Yn-1 ) }

LCS问题也具有重叠子问题性质:为找出X和Y的一个LCS,可能需要找X和Yn-1的一个LCS以及Xm-1和Y的一个LCS。但这两个子问题都包含着找Xm-1和Yn-1的一个LCS,等等.

阅读全文...